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Abstract

A Perfectly Matched Layer (PML) for linearized Euler equations with a parallel non-uniform mean flow is pre-

sented. The PML is formulated by utilizing a proper space–time transformation in its derivation so that in the trans-

formed coordinates all dispersive waves supported by the non-uniform flow have consistent phase and group velocities.

The space–time transformation is determined through a study of dispersion relations of all the linear waves. The pro-

posed PML equations are applicable to both bounded and unbounded flows and given in unsplit physical variables.

Furthermore, the stability of the PML is also considered. It is shown that the proposed PML is stable for a finite range

of the absorption coefficient. Numerical examples that demonstrate the validity and effectiveness of PML as an absorb-

ing boundary condition are presented.

� 2005 Elsevier Inc. All rights reserved.

Keywords: Non-reflecting boundary condition; Perfectly Matched Layer; Euler equations; Computational acoustics
1. Introduction

Non-reflecting boundary condition is necessary in all finite element and finite difference computations

that involve wave propagation to open or semi-open physical domains. It remains a significant challenge

particularly for fluids related problems where the governing equations are non-linear or have non-constant
coefficients. The need for accurate non-reflecting boundary condition has become even greater after the

substantial progresses made in recent years in the discretization methods, such as the utilization of high-

order schemes and unstructured meshes as well as orders-of-magnitude improvement in high performance
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computing power. Non-reflecting boundaries are often the sources of most significant numerical errors in

many practical computations.

In this paper, we develop non-reflecting boundary condition for the linearized Euler equations with a

parallel non-uniform mean flow based on the Perfectly Matched Layer (PML) methodology. PML was

originally developed as an absorbing boundary condition for computational electro-magnetics
[6,11,33,26,9,31]. The significance of the PML technique lies in the fact that, for multi-dimensional prob-

lems, the absorbing zone so constructed can be theoretically reflectionless for out-going waves of any angle

and frequency. However, early works on the extension of PML technique to the Euler equations in fluid

dynamics indicated that a direct adaptation of the original split formulation could lead to numerical insta-

bility problems [16,17,1,27].

Substantial progresses have been made in recent studies regarding the PML for fluids dynamics

[27,18,5,3,13]. It has now been recognized that the cause for instability in previous PML formulations is

that the Euler equations, with a convective mean flow, support waves with phase and group velocities in
opposite directions and these waves are actually amplified and become instability waves under the original

PML formulation [18]. Consequently, a necessary condition for any wave to be absorbed, and not ampli-

fied, under the original PML technique is that its phase and group velocities must be consistent. Recogniz-

ing this, new formulations of PML have appeared in the literature [18,12,13,3]. For instance, in [18], a stable

PML for the linearized Euler equations with a uniform mean flow was proposed. It employed a space–time

transformation before applying the PML technique so that in the transformed coordinates all waves have

consistent phase and group velocities. This has led to a dynamically stable and highly effective absorbing

boundary condition. The method used in [18] has also been recently applied to the shallow water equation
in geophysics [2].

The focus of this paper is on the formulation of stable PML for Euler equations with non-uniform mean

flows. Recently, in [13], a formulation of PML for linearized Euler equations with a uniform mean flow was

extended to non-uniform flows, in which one parameter of the layer was adjusted numerically to maintain

stability. The main issue, as we will show in this paper, is how to choose a priori the proper space–time

transformation when the mean flow is non-uniform so that all waves supported by the governing equations

have consistent phase and group velocities in the transformed coordinates. It will be shown in the current

work that such a space–time transformation can be determined based on the study of dispersive waves of the
Euler equations. By an application of the proper space–time transformation, stable PML equations can be

constructed following the technique used in [18]. The emphasis of the paper will be on how to extend the

technique used in [18] to the case of non-uniform mean flows. The effectiveness of the approach will be dem-

onstrated through numerical examples.

The rest of the paper is organized as follows. In the next section, recent progresses are reviewed and the

importance of understanding the dispersion relations of linear waves for the construction of stable PML is

discussed. Then, a detailed study on all dispersive waves supported by the Euler equations with a wall

bounded non-uniform mean flow is presented in Section 3. Following a proper space–time transformation
suggested by the study in Section 3, the derivation of PML equation is given in Section 4. In Section 5, the

stability of proposed PML equation is studied. The PML for unbounded flows are presented in Section 6.

Finally, numerical examples are reported in Section 7 that demonstrate the validity and efficiency of the

PML as an absorbing boundary condition. Section 8 contains concluding remarks.
2. Dispersive waves and the stability of PML

In this section, a brief review of recent works on PML for the Euler equations (see, e.g.,

[1,5,3,12,13,18,27]) will be given, which emphasizes the importance of understanding the dispersive waves

of the physical system in constructing stable PMLs.
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One view of the PML technique is that it is a complex change of variable in the frequency domain

[7,9,11,26,31] and this view will be assumed in the present investigation. For simplicity, all discussions in

this section will be limited to the construction of a vertical x-layer which involves a PML complex change

of variable for x as
x ! xþ i

x

Z x

x0

rx dx; ð1Þ
where rx > 0 is the absorption coefficient (a constant or a function of x) and x0 is the location of the PML/

Euler interface. Other alternative forms of (1) are possible, such as the one given in [4] for long time sta-

bility, but they will not alter the basic arguments provided below. As a heuristic argument, consider a wave
ansatz of the form
eiðkx�xtÞ. ð2Þ

Under the complex change of variable (1), it becomes
eiðkx�xtÞe
�k

x

R x

x0
rxdx

. ð3Þ

The second factor in expression (3) indicates that the wave amplitude decays exponentially in the PML zone

if and only if
k
x

Z x

x0
rx dx > 0 ð4Þ
as the wave propagates from an arbitrary location x 0 in the PML zone. This means that the PML is only

absorbing for a wave that propagates to the right (x increasing) with k/x > 0 or propagates to the left (x

decreasing) with k/x < 0. In other words, for the amplitude of the wave to be reducing (and not increasing)

in the PML domain, the direction of wave propagation should be consistent with the sign of k/x or, equiv-
alently, the phase velocity x/k [18,5]. Since the direction of propagation of a dispersive wave is determined

by the group velocity, this necessary condition has been expressed nicely in [5] as
k
x

dx
dk

> 0; ð5Þ
or, equivalently,
cphcg > 0 ð6Þ

where cph and cg are, respectively, the phase velocity, x/k, and the group velocity, dx/dk. That is, for the
PML technique to yield stable absorbing boundary conditions, the phase and group velocities of the phys-

ical waves must be consistent and in the same direction. Conversely, any wave of the original physical sys-

tem having its phase and group velocities in opposite directions will be exponentially amplified and result in

instability in the PML domain. Condition (5) links intimately the construction of stable PMLs to the
dispersion relation, i.e., x = x(k), of the physical waves under investigation.

This necessary condition for stable PML has been recognized in several recent studies [27,18,5,13]. For

instance, in [18], it was pointed out that, in the presence of a convective mean flow, the Euler equations

support acoustic waves that have a positive group velocity but a negative phase velocity and these waves were

actually amplified in previous PML formulations. It was further proposed in [18] that, when deriving the

PML equation for the Euler equations, a proper space–time transformation be used before applying the

PML technique so that in the transformed coordinates all linear waves supported by the Euler equations

have consistent phase and group velocities. For the linearized Euler equations with a uniform mean flow
in the x-direction, the proper space–time transform involved essentially a transformation in time of the

form
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�t ¼ t þ bx; ð7Þ

where
b ¼
�U 0

1� �U 2

0

ð8Þ
in which �U 0 is the uniform mean flow Mach number [18]. The corresponding transformation in the fre-

quency–wavenumber space is
�k ¼ k þ bx; �x ¼ x. ð9Þ

The value of b in (8) was determined so that the dispersion relation of the convective acoustic waves,

namely,
ðx� �U 0kÞ2 � k2 � k2y ¼ 0
becomes the following in the transformed space
�x2=ð1� �U 2

0Þ � ð1� �U 2

0Þ�k
2 � k2y ¼ 0
for which the phase and group velocities are consistent [18]. This transformation is similar to the well-

known ‘‘Prandtl–Glauert’’ transformation in aerodynamics. In [18], a new PML equation was formulated

by applying the complex change of variable (1) in the transformed coordinates in the derivation process.

It was demonstrated that the new PML formulation was dynamically stable and perfectly matched to

the Euler equations for the acoustic, vorticity and entropy waves. The importance of the space–time trans-

formation (7) and the particular choice for b in (8) were also confirmed in recent independent formulations

in [3,12,13]. For example, in [13], the importance of the transformation (7) was reflected by forming a spe-

cial wave ansatz. An extension of PML to non-uniform mean flows was also given in [13] where an equiv-
alent value for b, called l, was adjusted by numerical experiments that gave stable solutions.

The question becomes whether it is still possible to determine a priori the proper space–time transforma-

tion for the Euler equations with an arbitrary non-uniform mean flows so that, in the transformed coordi-

nates, all linear waves have consistent phase and group velocities. We will show in the next section that, for

a parallel non-uniform mean flow, it is again possible, and necessary, to apply a transformation of the form

(7) in the derivation of PML equation and the value for b in (7), actually a unique choice, can be determined

through a study of the dispersion relations of the physical waves.
3. Linear waves of Euler equations with a non-uniform mean flow bounded by solid walls

Let the linearized Euler equations with a parallel non-uniform mean flow be written as
ou

ot
þ A

ou

ox
þ B

ou

oy
þ Cu ¼ 0 ð10Þ
in which
u ¼

q

u

v

p

0
BBB@

1
CCCA; A ¼

�U �q 0 0

0 �U 0 1
�q

0 0 �U 0

0 1 0 �U

0
BBBB@

1
CCCCA; B ¼

0 0 �q 0

0 0 0 0

0 0 0 1
�q

0 0 1 0

0
BBB@

1
CCCA; C ¼

0 0 d�q
dy 0

0 0 d �U
dy 0

0 0 0 0

0 0 0 0

0
BBBB@

1
CCCCA;
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where u and v are velocity components in the x and y directions respectively, non-dimensionalized by a ref-

erence speed of sound a0; q is the density, non-dimensionalized by a reference value q0; and p is the pres-

sure, non-dimensionalized by q0a
2
0. Also, the space variables x and y are non-dimensionalized by a reference

scale ‘0 and time t is non-dimensionalized by ‘0/a0. The mean velocity �UðyÞ and density �qðyÞ are functions of
y only and the mean pressure is constant. We note that, alternatively, Eq. (10) can be formed by a u vector
that contains only u, v and p, since the equation for density q can be separated. This will result in a smaller

system, but will not affect our derivation of the PML equation.

As the discussion in the previous section shows, the construction of stable PML depends on the disper-

sion relations of the physical waves supported by the Euler equations. In this section, we conduct a study of

linear waves of (10) in a parallel flow bounded by solid walls at y = ±1, as shown in Fig. 1. For this purpose,

a linear wave analysis for (10) will be carried out numerically, since a closed form dispersion relation is not

available for non-uniform mean flows. In this approach, we seek solutions to (10) of the form
uðx; y; tÞ ¼ ûðyÞeiðkx�xtÞ; ð11Þ

where x and k are the frequency and wavenumber respectively. By substituting (11) into the Euler equation

(10), we get an eigenvalue problem
�ixûþ ikAûþ B
dû

dy
þ Cû ¼ 0 ð12Þ
with these homogeneous boundary conditions,
dû
dy

¼ v̂ ¼ dp̂
dy

¼ dq̂
dy

¼ 0 at y ¼ �1. ð13Þ
This eigenvalue problem will be solved by a spectral collocation method which is a standard method in

hydrodynamic stability analysis [25,10,22]. Further details are given in Appendix A. It yields a complete

spectrum of all normal modes supported by (12). Each eigenvalue x of (12) as a function of given wave-

number k defines the dispersion relation x = x(k) for that wave mode.

As a specific example, we will demonstrate the dispersion relations of all linear waves associated with a

shear flow of mean velocity
�UðyÞ ¼ 1

2
ðU 1 þ U 2Þ þ ðU 1 � U 2Þ tanh

2y
d

� �� �
ð14Þ
and mean density
�qðyÞ ¼ 1
�T ðyÞ ð15Þ
with
�T ðyÞ ¼ T 1

�U � U 2

U 1 � U 2

þ T 2

U 1 � �U
U 1 � U 2

þ c� 1

2
ðU 1 � �UÞð �U � U 2Þ;
Fig. 1. A schematic of a bounded parallel non-uniform mean flow.
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where the mean temperature �T ðyÞ is determined by the Crocco relation for compressible flows. c = 1.4. The

mean flow parameters chosen for the example are as follows:
U 1 ¼ 0.8; U 2 ¼ 0.2; d ¼ 0.4; T 1 ¼ 1; T 2 ¼ 0.8.
The mean velocity and density profiles are plotted in Fig. 2. Both are non-constant.

Fig. 3 shows the dispersion relations diagram of all the normal modes of (12), i.e., xr (real part of x) vs.
k. The imaginary part is zero for all wave modes except the Kelvin–Helmholtz instability wave which will be

shown later.

In the dispersion relations diagram, we see two families of waves. One family has phase speed between

Umin = 0.2 and Umax = 0.8, shown between dashed lines in Fig. 3. They are actually a discretization of a

continuous spectrum. For convenience of discussion, these waves will be referred to as ‘‘vortical’’ modes

in this paper. The vortical modes convect with the mean flow. We see that for the vortical modes, both
the group and phase velocities are positive. Therefore condition (5) is satisfied. We note that one of the vor-

tical modes is the Kelvin–Helmholtz instability wave supported by the present mean flow profile. An en-

larged graph is shown in Fig. 4 for the real and imaginary parts of x as functions of k where the

Kelvin–Helmholtz wave, as well as its complex conjugate, is highlighted by circles.

The other family of waves in the dispersion relation diagram in Fig. 3 will be referred to as ‘‘acoustic’’

modes. A closer examination on the phase speed of the acoustic modes will show that they always have a

phase speed supersonic relative to part of the mean flow. Furthermore, they are dispersive waves [32], where
Fig. 2. Mean velocity and density used in the example.



Fig. 3. Dispersion relation diagram. Triangles denote the points of zero group velocity. Dashed lines are xr = U1k and xr = U2k.
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x/k 6¼ constant. Fig. 3 also shows that the acoustic modes do not always have consistent phase and group

velocities. A triangle on the acoustic waves indicates the location where the group velocity is zero, i.e., dxr/

dk = 0. As we can see, for the acoustic modes in the upper left and lower right quarters in Fig. 3 that lie
between the triangle and the vertical axis, their phase velocity (xr/k) is negative but their group velocity

(dxr/dk) is positive. By the argument provided in the previous section, applying directly the PML complex

change of variable (1) to the Euler equation (10) without a proper space–time coordinate transformation in

the derivation process will result in these waves being amplified and becoming unstable waves.

To find the proper space–time transformation, we note that, remarkably, the locations of zero group

velocity points on the dispersion diagram (triangles in Fig. 3) appear to lie closely on a straight line. This

implies that a linear space–time transformation of the form (7), which incurs a transformation in the fre-

quency–wavenumber space of the form (9), can again be used to ‘‘correct’’ the dispersion relation. The
obvious choice for b in (7) and (9) is
b ¼ � 1

c0
; ð16Þ
where c0 is the slope of the line of triangles (xr = c0k) in Fig. 3. In Table 1, the locations of the zero group

velocity points for the first 20 acoustic modes are listed. For the current example, Table 1 suggests a value

c0 � �1.4073.

The dispersion relation diagram in the transformed coordinates is shown in Fig. 5. Now all the waves

have approximately consistent phase and group velocities and, therefore, satisfy condition (5).

It is important to point out that it does not appear to be accidental that all points of zero group velocity

fall closely on a straight line. For other types of subsonic mean flow profiles, including mixing layers, jets,

wakes, as well as viscous boundary layer flows, it was found, at least numerically, that the points of zero



Fig. 4. Dispersion relation diagram enlarged from Fig. 3. Top: xr (real part of x) vs. k; bottom: xi (imaginary part of x) vs. k. The
circles highlight the Kelvin–Helmholtz instability wave.
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group velocity on the dispersion diagram for the acoustic modes were always closely lined. Two further
examples of jet and plane Poiseuille flows are shown in Fig. 6. It is also worth pointing out that if part

of the mean flow is supersonic, it has been found that each acoustic mode will have two locations where



Table 1

Values of k0 and x0 where the group velocity is zero in Fig. 3

Mode number k0 x0 x0/k0

1 ±0.09291 «1.2721 �1.3692

2 ±1.7852 «2.5675 �1.4382

3 ±2.7414 «3.8293 �1.3969

4 ±3.6331 «5.1200 �1.4091

5 ±4.5378 «6.3924 �1.4086

6 ±5.4594 «7.6739 �1.4056

7 ±6.3559 «8.9519 �1.4084

8 ±7.2725 «10.2308 �1.4068

9 ±8.1773 «11.5097 �1.4075

10 ±9.0874 «12.7885 �1.4072

11 ±10.9045 «15.3462 �1.4073

12 ±11.8134 «16.6250 �1.4073

13 ±12.7220 «17.9038 �1.4073

14 ±13.6308 «19.1827 �1.4073

15 ±14.5394 «20.4615 �1.4073

16 ±15.4482 «21.7403 �1.4073

17 ±16.3569 «23.0192 �1.4073

18 ±17.2656 «24.2980 �1.4073

19 ±18.1743 «25.5769 �1.4073

20 ±19.0830 «26.8557 �1.4073
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the group velocity becomes zero [20], which would make the linear transformation (7) alone ineffective for

transonic mean flows.
4. Derivation of PML equations

4.1. Unsplit formulation

Once the value of b for the proper space–time transformation (7) has been determined based on the dis-

persion relations of the acoustic modes, the derivation of PML for the Euler equations can be carried out as

follows. We shall first apply the space–time transformation (7) to the governing equations so that all dis-

persive waves have consistent phase and group velocities. Then, the PML complex change of variable (1)

will be applied in the transformed coordinates. And finally the PML equation in the original physical time

domain is obtained. Details are given below.

Under transformation (7), we have these changes in the partial derivatives
o

ot
! o

o�t
;

o

ox
! o

ox
þ b

o

o�t
; ð17Þ
and the Euler equation (10) in transformed coordinates becomes
ðIþ bAÞ ou
o�t

þ A
ou

ox
þ B

ou

oy
þ Cu ¼ 0. ð18Þ
The PML technique will first be applied to the transformed equation (18). As in [18], we first write (18) in

the frequency domain,
�i�xðIþ bAÞ~uþ A
o~u

ox
þ B

o~u

oy
þ C~u ¼ 0; ð19Þ
in which uðx; y;�tÞ ¼ ~uðx; yÞe�i�x�t is assumed.



Fig. 5. Dispersion relation diagram in transformed space. Triangles denote the points of zero group velocity.
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To construct the PML equation for the vertical x-layer, we apply the PML complex change of variable

(1) to the frequency domain equation (19) which involves a change in the partial derivative with respect to x

as
o

ox
! 1

1þ irx
x

o

ox
; ð20Þ
where rx is a positive function of x. That is, Eq. (19) is modified to be
�i�xðIþ bAÞ~uþ 1

1þ irx
�x

A
o~u

ox
þ B

o~u

oy
þ C~u ¼ 0. ð21Þ
Eq. (21) is the PML equation for the x-layer in the frequency domain. It will now be written back in the

time domain by following an unsplit approach used in [7,11,18,31]. By multiplying the equation with

1þ irx
�x , we get
ð�i�xþ rxÞðIþ bAÞûþ A
oû

ox
þ 1þ irx

�x

� �
B
oû

oy
þ 1þ irx

�x

� �
Cû ¼ 0.
Then the equivalent time domain equation for the above is easily found to be
ðIþ bAÞ ou

�
þ rxu

� �
þ A

ouþ B
ouþ rx

oq
� �

þ Cðuþ rxqÞ ¼ 0; ð22Þ

ot ox oy oy



Fig. 6. Dispersion relation diagram of a jet (left) and a channel Poiseuille flow (right). Triangles denote the points of zero group

velocity.
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where q is an auxiliary variable defined as
oq

ot
¼ u. ð23Þ
Finally, when (22) is written in the original physical coordinates (x, y, t), we get the following PML equa-

tion for (10) with non-uniform mean flows,
ou

ot
þ A

ou

ox
þ B

ou

oy
þ rx

oq

oy

� �
þ Cðuþ rxqÞ þ rxuþ rxbAu ¼ 0; ð24Þ
where the equation for q is that given in (23). We note that q is only necessary inside the PML domains

[18].

4.2. Absorption of hydrodynamic instability waves

It is well known that Euler equations can support hydrodynamic instability waves, for example, the

Kelvin–Helmholtz instability for jets and mixing layers where the mean velocity profile has an inflection
point. The PML should be absorbing to all waves, including the instability and evanescent waves. There

are generally two kinds of hydrodynamic instabilities, namely the absolute and convective instabilities

[23]. For numerical simulations, we are mostly concerned with the convective instability waves that grow

spatially and propagate with the mean flow to the outflow boundary. A simple argument on the phase

and group velocities, given below, will show that the PML formulated here will always absorb convective

instability waves.



480 F.Q. Hu / Journal of Computational Physics 208 (2005) 469–492
Suppose that the mean flow is from left to right. Then the group velocity of a convective instability wave

that propagates with the mean flow will be positive, i.e.,
dxr

dk
> 0.
Furthermore, by an extension of the semi-circle theorem (in the theory of hydrodynamic stability) to com-

pressible flows, it has been shown in [8] that the phase speed of any instability wave is bounded by the max-

imum and minimum values of the mean velocity, i.e.,
0 < Umin 6
xr

k
6 Umax. ð25Þ
Therefore, the phase and group velocities of a convective instability wave are both positive and condition

(5) is always satisfied. This means that the spatial growth rate of convective instability waves will always be

reduced in the PML zone. To completely annihilate the instability waves, the PML absorption rate should

be designed such that it is greater than the spatial growth rate of the instability waves.

4.3. Value for b

The parameter b in Eq. (24) is a critical number for ensuring the stability of the PML equation. In the

previous section, the proper value for b, appeared in the space–time transformation (7) used in the deriva-

tion of PML, has been determined as the negative reciprocal of the phase velocity c0 of the acoustic wave

modes at which the group velocity is zero. In other words, if in general D(x, k) = 0 is the dispersion rela-

tion, then
c0 ¼
x0

k0
and b ¼ � 1

c0
; ð26Þ
where x0 and k0 are the roots to the coupled equations
Dðx0; k0Þ ¼ 0;
oD
ok ðx0; k0Þ ¼ 0.

(
ð27Þ
This is certainly the case for the uniform mean flow where the exact dispersion relation for the acoustic

wave is known, as discussed in Section 2. For non-uniform shear flows, although the acoustic modes have

been found and studied extensively in the past, for example for jets [28], shear layers [29,14,15], wakes [34]

and boundary layers [24], an explicit and direct relationship between the phase speed c0 define in (26) and

an arbitrary mean flow profile has not been available. The spectral collocation method, its details given in

Appendix A, provides a general way of determining the dispersion relations for an arbitrary mean flow,

from which the value for c0 and, thus, b can be extracted. A special case is worth mentioning. If the mean

density is constant, i.e., the non-dimensionalized mean density �qðyÞ ¼ 1, it has been found that a reasonably
good empirical formula for b for practical purposes is
b ¼
�Um

1� �U 2

m

; ð28Þ
where �Um is the average mean velocity,
�Um ¼ 1

b� a

Z b

a

�UðyÞdy ð29Þ
for a domain in y 2 [a, b].
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5. Stability of the PML equations

When the value of b in the PML equation (24) is determined based on the dispersion relations of linear

waves as described earlier, all the physical waves of the Euler equations become absorbed in the PML do-

main, and their amplitudes are going to be reduced exponentially as they travel in the PML domain. How-
ever, with the introduction of the auxiliary variable q, the order of partial differential equations has

increased (doubled). As a result of this, the PML system of equations (24) and (23) now admits additional

non-physical waves. It is important that these additional wave modes are not exponentially growing. In this

section, we study this issue and carry out a stability analysis for Eqs. (24) and (23) when rx is held constant.

Following the similar approach used in the analysis of the Euler equation (10) in Section 3, we seek solu-

tions to (24) and (23) of the form
uðx; y; tÞ ¼ ûðyÞeiðkx�xtÞ; ð30Þ

qðx; y; tÞ ¼ q̂ðyÞeiðkx�xtÞ. ð31Þ

By substituting the above into (24) and (23), we get
ð�ixÞûþ ikAûþ B
dû

dy
þ rx

dq̂

dy

� �
þ Cðûþ rxq̂Þ þ rxûþ rxbAû ¼ 0; ð32Þ

ð�ixÞq̂ ¼ û. ð33Þ
With homogeneous boundary condition (13) for û and similarly for q̂, (32) and (33) again form an eigen-

value problem and can be solved by the spectral collocation method (see Appendix A). For any given wave-

number k, an eigenvalue x with a positive imaginary part would indicate an exponentially growing wave.

In Figs. 7(a), (b) and (c), we plot the imaginary part of all wave modes of (32) and (33) where the value of

rx is taken to be a fixed constant 0.2, 2.0 and 10.0, respectively, for wavenumber k in the range of �20 to 20.

The mean flow profile in this example is the same as that used for the example in Fig. 3. For cases (a) and
(b), we see that all wave modes have the imaginary part of x below zero, including the original Kelvin–

Helmholtz wave, indicating that the PML equation is dynamically stable, at least within the range of k

being considered. For case (c) where rx = 10, however, some wave modes have emerged with positive imag-

inary parts and thus become unstable at high wave numbers. These modes are originated from the non-

physical waves. Fig. 7(c) indicates that the PML equations (23) and (24) could have exponentially growing

solutions if the value of rx is taken to be too large. This has been found to be typical that the system of (23)

and (24) is stable when the value of the absorption coefficient is below certain limit, let which be denoted by

rs, but admits unstable wave modes when rx is greater than that limiting value rs. Experiments show that
the limiting value rs varies widely depending on the particular mean flow profile. For the current example,

the limiting value rs = 3. For other mean flow profiles, such as a linear shear mean velocity [20], the limiting

value has been found to be as large as 100.

For cases where the value for rs is too small, the fact that the PML is stable only when rx 6 rs could
mean that a relatively large PML domain might be needed to achieve a desirable degree of wave absorption,

because the effectiveness of a PML domain depends on the magnitude of the absorption coefficient as well

as the total width of the absorbing zone [16,19]. For such cases, one practical remedy could be to use grid

stretching in the PML domain, so that its effective width is increased without employing more grid points
[26,33,19]. A grid stretching is equivalent to simply modifying the x derivative terms of the PML equation

as
o

ox
! 1

aðxÞ
o

ox
; ð34Þ



Fig. 7. Imaginary part of all wave modes: (a) rx = 0.2, (b) rx = 2.0, (c) rx = 10.0.
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where a(x) P 1 is a smooth function. For example,
aðxÞ ¼ 1þ A
x� x0
D

��� ���s; ð35Þ
where x0 is the start of the PML domain and D its width. Grid stretching also has a side effect of introduc-

ing numerical damping which could improve the stability of PML even when rx is greater than the stability

limiting value rs. This has been found to be quite effective in computations, as will be shown in the examples

given later in Section 7.
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6. PML for unbounded flows

When the flow is unbounded, horizontal y-layers are needed to terminate the computational domain at

the top and bottom boundaries, as shown in Fig. 8. For a parallel mean flow aligned with the x-axis, the

PML equation for the y-layers and corner layers can be developed by applying a complex change of
variable in y, similar to (1) for x, namely,
y ! y þ
Z y

y0

ry dy and
o

oy
! 1

1þ iry
x

o

oy
; ð36Þ
to the frequency domain equation (21), where ry is a positive function of y. Upon rewriting the resulting

equation in the time domain, we get a PML equation that is formally valid for all the vertical x-layers,

horizontal y-layers as well as the corner layers. This is given below,
ou

ot
þA

o

ox
ðuþryqÞþB

o

oy
ðuþrxqÞþCðuþrxqþryqþrxryq

0ÞþðrxþryÞuþrxryqþrxbAðuþryqÞ¼ 0;

ð37Þ

where q 0 is another auxiliary variable defined as
oq0

ot
¼ q.
While q 0 is only necessary at the corner layers (where both rx and ry are non-zero), we point out that in

many practical applications the mean flow is uniform or nearly uniform within the y-layers, i.e., the we of-

ten have
ryC � 0. ð38Þ

Therefore, the q 0 term can, in fact, be dropped from (37) for such cases. Equation (37) is perfectly matched
to the Euler equation (10). We note that, except the term involving the C matrix, Eq. (37) is otherwise iden-

tical to the PML equation for a uniform mean flow given in [18], and it can be similarly made symmetriz-

able, thus strongly well-posed, by a slight modification as that given in [18]. Further implementation issues

are referred to [18].

We note that even though the flow is now physically unbounded, it becomes bounded artificially due to

the truncation of the computational domain in y, where solid wall like boundary conditions are usually

applied at the end of the PML domains. To determine the value for b to be used for (37), a linear wave
y-layer layer

y-layer

x-
la

ye
r

x-
la

ye
r

corner

U(y)

Fig. 8. A schematic of an unbounded parallel non-uniform mean flow, showing x-layers, y-layers and corner layers.



Fig. 9. Contours of the numerical solution at t = 70: (a) pressure, (b) u-velocity.
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analysis similar to that of a wall bounded flow should now be carried out with the inclusion of the horizon-
tal PML y-layers, namely, for the following equation:
ou

ot
þ A

o

ox
ðuþ ryqÞ þ B

ou

oy
þ Cðuþ ryqÞ þ ryu ¼ 0 ð39Þ
with appropriate homogeneous boundary conditions. Nonetheless, it was found that the presence of y-

layers did not substantially alter the dispersion relations of the acoustic modes. Therefore, for simplicity,

the value of b in (37) for unbounded flows could still be determined in the same way as that for the bounded

flows described in previous sections, assuming that solid walls are placed at the top and bottom boundaries

of the computational domain.
7. Numerical examples

In this section, three numerical examples will be presented, dealing with bounded and unbounded non-

uniform mean flows. More examples can be found in [20].

7.1. Wall bounded shear flow

Consider a mixing layer, with the mean velocity and density specified by (14) and (15) and bounded by
solid walls at y = ±1, as shown in Fig. 1. The Euler equation (10) with the following source term added to

the equation of pressure:
sðx; y; tÞ ¼ sinð1.5tÞe�ðln 2Þðx2þy2Þ=0.052 ; ð40Þ



Fig. 10. Pressure time history. Solid line: numerical solution; circles: reference solution.
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is solved by a finite difference scheme. For the results shown in Figs. 9–11, the computational domain is

[�1.4, 7.4] · [�1, 1] with a uniform grid Dx = Dy = 0.04. Two PML domains, each consisting of 10 grid

points, are used at the inflow and outflow boundaries. The absorption coefficient rx varies with x as
rx ¼ rmax

x� x0
D

��� ���2; ð41Þ
where rmax = 20 and x0 = �1 for the inflow and x0 = 7 for the outflow PML domains. For the calculations

reported here, a grid stretching of the form given in (35) is also used with the parameters being A = 2 and

s = 2. All spatial derivatives are discretized by a 7-point DRP fourth-order central difference scheme [30],

with a 10th-order filter applied throughout the computational domain [17]. Time integration is carried out

by the optimized 5 and 6 stages alternating Low Dissipation and Low Dispersion Runge–Kutta scheme

(LDDRK56) [21].
The added source term (40) generates an acoustic wave that is reflected repeatedly by the solid walls. At

the same time, it excites the Kelvin–Helmholtz instability wave of the mixing layer that propagates down-

stream. Figs. 9(a) and (b) show the pressure and u-velocity contours, respectively, at time t = 70. Clearly,

wave absorptions at both the inflow and outflow PML domains are quite effective.

In Fig. 10, the pressure as a function of time is plotted for two selected points located at (6.8, 0) and

(�0.8, 0) near the outflow and inflow boundaries respectively. The solid line is the numerical solution

and circles represent a reference solution obtained by using a larger computational domain so that it is

not affected by any boundary effects. Excellent agreement is found between the numerical and reference



Fig. 11. Maximum difference between the numerical and reference solutions along x = 6.8 as a function of time: (a) D = 10Dx;
(b) D = 20Dx.

486 F.Q. Hu / Journal of Computational Physics 208 (2005) 469–492
solutions with no discernible difference on the graphic scale. For a quantitative measure of the reflection

error, the maximum difference between the numerical and reference solutions on all grid points along

x = 6.8 near the exit boundary is plotted in Fig. 11. The top graph shows the results using 10 grid points
in the PML zone and the bottom graph using 20 points, with two cases of rmax = 3 and 20 in each graph.

Obviously, more absorption is achieved when a larger value of rmax is used. Since the amplitude of the

Kelvin–Helmholtz wave at the exit is about 0.1, Fig. 11 indicates that the reflection error is less than 1%



Fig. 12. u-Velocity contours, at the time as indicated.
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when 10 grid points are used in the PML domain and the reflection is less than 0.1% with 20 grid points and
rmax being 20.

We note that even when the maximum value of the absorption coefficient rmax used in this example is

greater than the stability limiting value rs, which is 3 for the current mean flow, no numerical instability

has been observed in the computation. This suggests that grid stretching combined with numerical filtering

may be sufficient to suppress the growing modes identified in Fig. 7(c) when rx is beyond the stability lim-

iting value rs.

7.2. Unbounded mixing layer

In the second example, the propagation of an acoustic pulse in an unbounded shear flow, specified again

by (14) and (15), is simulated. The computational domain is [�2.4, 2.4] · [�2.4, 2.4] with PML zones, con-

sisting of 10 grid points, on all four sides. Eq. (37), without the q 0 term, is used for the PML zones. The

value of b = �1/c0 where c0 = �1.416 is obtained by assuming that the flow is bounded at y = ±2.4, which

is only slightly different from that found in the previous example. The initial condition is



Fig. 13. u-Velocity time history at point (x, y) = (1.8, 0). Solid line: numerical solution; circles: reference solution.
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t ¼ 0; u ¼ v ¼ q ¼ 0; p ¼ e�ðln 2Þðx2þy2Þ=0.22 .
Fig. 12 shows the u-velocity contours at t = 1.5, 2.5, 3.5 and 6. The initial acoustic pulse as well as the vor-

ticity wave induced by the shear flow are absorbed effectively at the boundaries. Fig. 13 shows the time his-

tory of the u-velocity at a sample point (1.8, 0) near the outflow boundary. The numerical (solid line) and

reference (circles) solutions are again in excellent agreement. The maximum difference between the numer-

ical and reference solutions for the pressure along x = 1.8 is plotted in Fig. 14, which shows that the use of
PML caused little reflection.
7.3. Unbounded jet flow

In the third example, the acoustic radiation of a point source located inside a subsonic jet is simulated.

The jet mean velocity and density are given by
�u ¼ Ua þ ðUj � UaÞe�ðln 2Þy2=0.32 ; �q ¼ 1; ð42Þ
where Ua = 0.2 and Uj = 0.5. A source term of the form
sðx; y; tÞ ¼ sinð20ptÞe�ðln 2Þ½ðxþ0.5Þ2þy2�=0.032
is added to the equation for the pressure. The computational domain is [�1.1, 1.1] · [�1.1, 1.1], with

Dx = Dy = 0.01. The PML domains on all four sides have a width of 10 grid points.
For the mean flow given in (42), the spectral collocation method for the linear wave analysis suggests a

value of 0.3124 for b. Formula (28), given for a constant mean density, yields the same value for b as well.

Fig. 15 plots instantaneous pressure contours and shows clean absorption of out-going waves. The mean

flow refraction effect is also notable. At the current high frequency for the source, the jet instability wave is

not excited. To compare with a reference solution, the pressure history at a sample point (x, y) = (0.95, 0.5)

near the outflow boundary is plotted in Fig. 16. Again we see excellent agreements.



Fig. 14. Maximum difference between the numerical and reference solutions along x = 1.8 as a function of time.

Fig. 15. Instantaneous pressure contours (right) and the mean velocity profile (left).
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Fig. 16. Pressure history at point (x, y) = (0.95, 0.5). Solid line: numerical solution; circles: reference solution.
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8. Conclusions

A Perfectly Matched Layer is presented as an absorbing boundary condition for the linearized Euler

equations with a parallel non-uniform mean flow. It applies to both bounded (ducted) and unbounded

flows. It is shown that for the stability of PML it is of critical importance to apply a proper space–time
transformation in the derivation of PML equation. The parameter for the proper space–time transforma-

tion can be determined a priori from the dispersion relations of acoustic modes supported by the mean flow.

Numerical examples show that the PML formulated here works well for subsonic compressible shear flows.

It is further shown that the proposed PML is dynamically stable for a finite range of the absorption coef-

ficient. Since the precise stability limit on the absorption coefficient is very much mean flow dependent and

can only be obtained through a stability analysis of the PML equations for the specific mean flow profile, it

is recommended that certain numerical dissipation be introduced in the PML domain, such as numerical

filtering or numerical damping. In all the computational examples reported here, a use of high order numer-
ical filtering and grid stretching has been sufficient for suppressing the non-physical unstable modes when

the absorption coefficient is moderately greater than the stability limiting value.
Acknowledgement

This work is supported in part by a grant from NASA Langley Research Center NAG1-03037 and by a

grant from the National Science Foundation DMS-0411402. The author also would like to thank the
reviewers for their constructive comments.
Appendix A. Spectral collocation method

In this appendix, we describe the spectral collocation method used to solve the eigenvalue problem posed

by (12) and (13). Assuming that the computational domain for y is [�1, 1], we expand the solution ûðyÞ in
basis polynomials as follows:
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ûðyÞ ¼
XN
n¼0

qn/nðyÞ
un/nðyÞ
vnwnðyÞ
pn/nðyÞ

0
BBB@

1
CCCA; ðA:1Þ
where {/n} and {wn} are formed by the Chebychev polynomials Tn(y) as
wnðyÞ ¼
T 0ðyÞ � T nþ2ðyÞ; n even;

T 1ðyÞ � T nþ2ðyÞ; n odd;

�

/nðyÞ ¼
1; n ¼ 0;

nþ2
2

� �2
T 2ðyÞ � T nþ2ðyÞ; n even;

ðnþ 2Þ2T 1ðyÞ � T nþ2ðyÞ; n odd.

8><
>:
The expansion (A.1) automatically satisfies the boundary condition for ûðyÞ [22]. By substituting (A.1) into

(12) and requiring that the equation be satisfied at collocation points,
yj ¼ cos
2jþ 1

2N þ 2
p

� �
; j ¼ 0; 1; 2; . . . ;N ;
we get
XN
n¼0

�ix

qn/n

un/n

vnwn

pn/n

0
BBB@

1
CCCAþ ikA

qn/n

un/n

vnwn

pn/n

0
BBB@

1
CCCAþ B

qn/
0
n

un/
0
n

vnw
0
n

pn/
0
n

0
BBB@

1
CCCAþ C

qn/n

un/n

vnwn

pn/n

0
BBB@

1
CCCA

2
6664

3
7775

y¼yj

¼ 0
for j = 0, 1, 2, . . . , N. This can be easily cast into a generalized algebraic eigenvalue problem for x of the

form Q~u ¼ xR~u where ~u is a vector consisting of all the expansion coefficients in (A.1) and Q and R are

(4N + 4) · (4N + 4) matrices. For the results given in Fig. 3, N = 63.
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